Effect of Rooting Compound, Rooting Medium, and Stage of Nutrient Supply on Rooting of Cutting-Propagated *Photinia glabra* (Thunb.) Max.

Mengzhao Wang\(^1\), Jiangtao Hu\(^1\), Ge Guo\(^1\), Yoo Gyeong Park\(^2\), and Byoung Ryong Jeong\(^1,2,3\)*

\(^1\)Department of Horticulture, Division of Applied Life Science (BK21 Plus Program), Graduate School, Gyeongsang National University, Jinju 52828, Korea, \(^2\)Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea, \(^3\)Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea

*Photinia glabra* (Thunb.) Max. is an evergreen shrub belonging to the Rosaceae that is widely grown for landscaping and gardening for its high ornamental value. Cutting is an important method for propagation of *P. glabra*. In this study, a L\(_{16}\) (3\(\times\)4\(\times\)3\(\times\)2) orthogonal test of (1) three concentrations of IBA (0, 3,000, and 8,000 mg·L\(^{-1}\)), (2) four propagation media (BVB Medium, Rockwool cube, Terra Plug, and Phenolic Foam), (3) three growth stage for supplying nutrient solution (from sticking to callusing, from callusing to rooting, or whole period), and (4) three ionic strength of nutrient solutions [0.0x, 0.5x, and the control (no water or nutrient solution was given)] was conducted to evaluate the rooting of cuttings of *P. glabra*. Stem cuttings cut into 6 cm in length with 4 fully-grown leaves taken from 1-year-old branches were stuck in one of the rooting media and kept on a fogged propagation bench under 30ºC/25ºC day/night temperatures and 85% relative humidity in a glasshouse for 54 days. The IBA treatment significantly shortened days to callusing and promoted callus diameter and improved ratio of rooted cuttings, and a concentration of 8,000 mg·L\(^{-1}\) was better than 3,000 mg·L\(^{-1}\). The phenolic foam was the best for ratio of rooted cuttings among the four media tested. Both growth stage of supplying a nutrient solution and ionic strength did not have significant effects on rooting of cuttings. However, ironic strength significantly promoted callus diameter, where a 0.5x ironic strength gave the biggest diameter, followed by 0.0x, and then the control. (Mengzhao Wang, Jiangtao Hu, and Ge Guo were supported by a scholarship from the BK21 Plus Program, Ministry of Education, Republic of Korea.)